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Introduction 
MRI is a powerful medical imaging modality that allows for 2D and 3D imaging in arbitrary scan 
orientations. However, in some clinical applications its full potential is compromised by the lack 
of imaging speed, e.g. in dynamic imaging such as interventional MRI or bolus tracking in MR 
Angiography, or in lengthy acquisitions such as MR spectroscopy, diffusion tensor imaging, 4D 
phase contrast MRI etc.  
Despite major reductions in image acquisition times by advances in gradient and coil hardware, 
trajectory and sequence design, the use of parallel MRI, and other methods, further decreased 
acquisition times are a desirable goal. Such accelerated imaging can improve patient comfort, 
increase patient throughput and reduce motion artifacts. In addition, it can greatly benefit or 
enable the imaging of dynamic processes including bolus tracking in angiography and function 
studies, interventional procedures, and motion studies.  
Here we discuss methods that purposefully reduce the number of acquired data samples in 
order to minimize acquisition time. While other approaches that use a priori information on the 
sampled data have been proposed, such as constrained reconstruction [1] including RIGR [2] 
and spatio-temporal undersampling with kt BLAST and kt SENSE [3], here we focus on the 
recently introduced Compressed Sensing [4] and HYPR [5] methods. Both of these approaches 
are based on the observation that most MR images contain redundant information either in form 
of compressibility of single images or spatio-temporal correlation among a time series or a 
functional image series.   

Compressed Sensing 
The compressed sensing (CS) or compressed sampling theory was recently established in the 
information theory community by Candes and Donoho [6, 7]. It states that compressible 
information can be recovered from significantly less measurements as determined by the 
Nyquist sampling theorem if the information is compressible and if the measurements are 
incoherent (e.g. random k-space sampling in MRI). In MRI, less than N2 Fourier samples can be 
sufficient to reconstruct an N2 image if the image is sparse and if the data sampling can occur in 
a random or very specific deterministic fashion [8]. 
While some MR images are fairly sparse by nature (e.g. contrast-enhanced MR angiograms 
with mask subtraction or phase contrast angiograms), other imaging scenes require the 
incorporation of sparsifying transforms such as the discrete gradient or wavelet transform in the 
reconstruction process. For example, several approaches use the total variance as the 
transform basis in MRI [4, 9, 10]. In a somewhat related fashion, digital images stored in the 
popular jpeg format undergo a discrete cosine transform for sparsifying and can be used with a 
lossy compression for dramatic reductions in file size with little perceptible loss to the observer. 
This lecture will discuss the basics of Compressed Sensing including considerations for the 
choice of the sparsifying transform and k-space sampling pattern. 

HYPR 
While Compressed Sensing can be applied to a single image, the HYPR (HighlY constrained 
backPRojection) technique [5] explores spatio-temporal redundancies in an image series. 
HYPR achieves high temporal and spatial resolution by severe angular undersampling with an 
interleaved 2D or 3D stack of stars, or truly 3D radial trajectory. Without further processing, 
these images would suffer from low SNR and sever streak artifacts. These image degradations 
are overcome by the incorporation of a reference or ‘composite’ image reconstructed from the 



 
Fig. 1:  Schematic of HYPR acquisition and reconstruction. 

projections in multiple or all time 
frames. In this technique, the 
reference data are not acquired 
before or after the dynamic process 
of interest but is obtained from the 
dynamic data instead. 

The process is illustrated for the 
case of contrast enhanced MRA in 
Fig. 1. Prior to the arrival of injected 
contrast material, a well sampled 
mask image is acquired so that 
signal from static tissue can be 
suppressed. Then a series of 
undersampled, interleaved radial 
data sets are acquired during the 
contrast pass using a small number 
of radial projections.  As shown in 
Fig. 1, if these are reconstructed 
using conventional filtered back 
projection, severe streak artifacts are seen (top row). For the HYPR algorithm a composite 
image is formed using all or a portion of the projections acquired during the examination. This 
composite image must be chosen so that for the number of projections acquired in each time 
frame, the temporal duration of the time frame projection set rather than the composite duration 
determines the temporal resolution of the image series. To fulfill this requirement the number of 
projections must be adequate to diminish signals that might be present in the composite image 
but which do not belong to the current time frame. Composite images can be formed using all 
time frames, an increasing sum beginning at the time of contrast arrival (progressive composite) 
or a sliding window sum centered at the current time frame.  

Each interleaved k-space projection is Fourier transformed to produce image space 
projections similar to what would be acquired with X-ray CT. Using a set of such projections 
adequate to satisfy the Nyquist theorem, an exact mathematical reconstruction can be obtained 
using the standard filtered backprojection algorithm. However as illustrated in Fig. 1, for 
undersampled data sets the filtered back projection produces severe streaking artifacts. In the 
HYPR method a weighting image is formed from the sum of projections acquired in each time 
frame. These projections are divided by the corresponding projection values obtained by Radon 
transformation of the composite image prior to formation of the weighting image.  

As illustrated in Fig. 1, to form each HYPR time frame the weighting image for that frame is 
multiplied by the composite image. Although the composite image is built from many time 
frames and contains contrast that does not appear until long after the present time frame, the 
future signals are suppressed by the weighting image, provided that a sufficient number of 
projections are used. Typically, angular undersampling factors of about 80 are possible. Fig. 1 
shows the improved image quality of the HYPR images (bottom row) relative to the 
undersampled filtered back projection images (top row). It is also clear that the sagittal sinus 
that appears in the composite image is suppressed following multiplication by the weighting 
image for frame 1. 



An essential component in HYPR 
processing is the use of an unfiltered 
constrained back projection process 
instead of the standard technique for 
backprojection when calculating the 
weighting image. In the filtered back 
projection case, the detected projection 
information is filtered and the signal is 
uniformly spread across the image plane. 
In the constrained back projection the 
composite image and backprojected 
projection information are multiplied 
resulting in the deposition of signal 
intensity only in contrast-containing 
regions. When a sufficient number of 
projections are used, signals present in the 
composite but not in the actual time frame 
are well suppressed so that the temporal 
resolution is determined by the time frame 
projections. How well this is accomplished 
depends on the sparsity of the information 
in the imaging volume and on the degree 
of spatio-temporal correlation between 
various locations in the volume. It is this need to use an adequate number of projections that 
ultimately determines the acceleration factor that can be used while still maintaining good 
contrast waveform fidelity. 
More recently, several modifications to the basic HYPR algorithm have been proposed to allow 
for faster reconstruction via regridding (HYPR LR) [12], the use of a second acquisition with a 
different contrats mechanism for the generation of the composite image (HYPR FLOW [11]), 
image reconstruction of phase sensitive data with a complex HYPR algorithm [13], and iterative 
HYPR reconstruction techniques [14] [15] for improved accuracy for quantitative imaging to 
permit HYPR processing in a broader range of combinations of sparsity and spatio-temporal 
correlation. An image series acquired with the PC HYPR Flow technique is shown in Fig. 2. The 
dataset has a spatial resolution of 320x320x320 voxels with an isotropic spatial resolution of 0.6 
mm. Images are reconstructed at 0.75 s time intervals. 
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